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We consider two mixed problems for a wedge, whose edges are infinite in 
both directions. We investigate the integral equation generated by these prob- 

lems and we present a method for its solution, different from the known appro- 
aches,effective for small apex angles a of the wedge. 

The case when the displacement and stress field does not depend on the 

coordinate along the edge of the wedge corresponds to the plane boundary 
problem. 

A detailed study of the fundamental and mixed problems for a wedge is 

contained in [l - 41 and other papers. In the case of a three-dimensional 
wedge, the static elasticity problem of the second kind has been solved by 

Ufliand r23 and in the paper by IJlitko ( l ) the problem of the first kind has 
been reduced to a single-valued invertible Fredholm equation of the second 
kind. 

1. On the basis of 1a.S. Ufliand’s solution r2] we investigate the static mixed prob- 
lem, antisymmetric with respect to a , with two separation lines of the boundary condi- 

tions, parallel to the z -axis which is directed along the edge of the wedge, and situated 
at distances c and d from it,respectively. In the domain between the mentioned lines, 

on both sides of the wedge, we assume that we are given the normal pressure depending 
on z and the displacements parallel to the faces. In the exterior of the indicated domain 

the faces of the wedge are rigidly fixed. 
The second mixed problem is formulated for the anti-plane deformation of the wedge. 

We assume that one of the faces of the wedge is rigidly fixed, while the other one, in 

the domain mentioned before, is loaded by a punch whose base performs a harmonic 
oscillation in the direction of the z-axis, independent of this coordinate. The unique 

unknown under the punch is the shear stress parallel to the z-axis. The wedge is assumed 

to be viscoelastic with a Young’s modulus constant in time and with a creep kernel 

6 (t - r) depending on the difference of the arguments. In particular, in the case of the 

absence of creep, we obtain an elastic wedge. 
The described problems can be reduced, with the aid of the Kantorovich-Lebedev 

transform [2], to the solution of the internal equation of the form 

(I.11 

l ) See A,F.Ulitko: The method of proper vector functions in the three-dimensional 

problems of the theory of elasticity. Author’s abstract of doctoral dissertation, Kiev, 

1971. 
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In the case of the static problem we use the following notation: 

i (r) = dp (~4 + caKp (%r) + CF (r) (1.3) 
K (IL) = u (ch 22~ - cos 2~) [ (3 - 4.;) sh 23~ + u sin 2a]-1 (~2 L p2)-* 

n-1 = 4c (1 - v), a=a’/c 
r?q fl ‘- rep’ - (x2$ + p?) 9 = ~7 (r) 

Here c,, c, are constants subject to determination, r, p are dimensionless parameters 

relative to C, P > 0 is an arbitrary number, cp (r) is a particular solution of the differ- 

ential equation, q (r) and w (r) are the Fourier transforms with respect to the coordinate 

I of the normal displacement and the stress.respectively, x = 1 r I, where r is the para- 

meter of the Fourier transforms with respect to the coordinate z. 
In the case of the dynamical problem we have introduced the notation 

x2 = -- D+VG-‘, K (I() = I, -1 th uu, A=G/c 

0 

Here o is the circular frequency of the oscillations of the punch, D is the density of 
the material of the wedge, f (r) is the amplitude of the displacements of the strip in 

the contact region, and Go, v are the shear modulus and Poisson’s ratio of the material 

of the wedge, respectively. The relations between the dimensionless quantities and those 

with dimensions are the same as in the static problem. 
In [5] a method is presented which allows the investigation of the special case when 

Eq. (1.1) is given on the interval [0, a]; but if Eq. (1.1) is given on the interval [i, a]$ 

this method is not immediately applicable. 
Below we present another method for the solution of this problem, which is based on 

the reduction to an infinite system of algebraic equations [S]. 
Without defining concretely the function K (u), we will assume that it is even and 

real on the real axis, meromorphic in the complex plane, and it does not have real Teros 

and poles. We assume that it admits a representation of the form 

R ( u) = R+ (14 K_\ 4, limuK(u)= C (u --* w) (1.5) 

Here K, and K_ are functions regular in the upper and lower half-planes, respectively, 

decreasing together with the functions [UK+ (u)]-1 on the system of regular contours. .- 
Let 

K+'(- ZJ = Cd-"' [I + 0 (I-' In l)] (1.6) 

[K_-'(;,)I' = CZ~':~ [i + O(l+h I)] (1-a m) 

Here zl and El are the zeros and the poles of the function K (u), respectively, situated 
in the upper half-plane and assumed to be simple with a finite distribution density f3. 
In order to simplify Eq. (1.1). we represent its right-hand side by a Kantorovich-Lebe- 
dev integral and therefore we restrict ourselves to the case 

j (r) = I, (xr) I,-1 (xa) 

For the indicated right-hand side we will seek the solution of Eq. (1.1) in the form 
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of the series 

m 

2 Ix.k’-iZk PP) I-izh_l txa) + YaK.+ (XV) K_kk-l (X)]) p-l 
k=l 1. 

(j .j 

where xk, ?/I< are constants subject to determination, We insert (1.7) into the left-han 
side of Eq. (1.1) and we perform the integration representing the kernel I; jr, !)! in the 
form 

This representation is obtained as a result of the evaluation of the integral (1.2) with 

the theory of residues. The latter is possible due to the estimates regarding the behavi 
of the functions K, (ti and I,, 1-1 in the complex plane p, obtained on the basis of tt 
results given in [7] and having the form [X] (1 p 1 - ~31 

As a result of the integration we obtain Jtirichlet type series with respect to the functic 
fp (z) and A,, (~1. Since these series must give the right-hand side of Eq. &I), we ar 

rive to an infinite system for the determination of the constants xl and ‘~1 

.l,,X l,:Y - /II, .\- -- (x,} 

lJ,X ‘. .&Y = 132, Y = (Yil (1.W) 
.111 = (0 rI (,i.l)! = iiv ll_i_l (i.1 q;, (?d] I(&.” - ZI’?) I_+ (k3 li’+ (h)]“’ 

.I,:!:-:;n,l(i.Ll); l-ill’I1;_l_ (i.}K <,.,, (jvll I(:,.” - ‘[“I K_izl (‘) K_i;, (h)l-r 

I:, A.= (a,.[ (2? I)‘, = - ilV i’l,., (2, I_;;, (“)I I;,.” -- Z!i) I+( (h) I _i.p)]-~ 

.I2 = ( CLI,[ (2, 2)) = - icv [ h’+ (x) I_i”,(x)] I(;,.’ - z/q K+ (z) I_$ (x)1_’ 

ii, - {hr (i)) = ixonlv [fi_ir, (kf I,(k)\ I(;,.~ ‘I’) r+ (h) I, (;.)I-! 

If? = {“,, (2)) =i - i.%FofV [l_i; (x) I, (z)/ I(&” 7 ?f) I+ (x) I, @)/.-I 

IV 12, y] = .Z’,l/ -- ?,C x,1 = Ii-’ (il])q & = %U 

The equalities (1.10) are sufficient conditions for the solvability of Eq. (1.1) in the 
class of solutions represented in the form (1.7). These conditions turn out to be also 
necessary, provided the system fhc (2). Khk(s)(/c = 1. 2, . . .I possesses the minimality 
property (strong linear independence) on tne interval of the real axis not containing 

the origin. In the case under consideration, the minimality property for the given SyS- 

tem can be proved by constructing the transformation operators [9]. and applying them 
to the minimal system of exponential functions ( [ 101. p. 192). 

It is easy to verify that for 1 & 1 + ~1, I q 1 - 30 the elements of the matrices Akt~ 

tend to the matrix A with the elements (& - s$r, while the elements of the mauice 

A,,~, k + j vanish, The infinite system with the matrix A has been analyzed in 1111 

We will use the results of that paper to the investigation o! the system (1. IO). 

2. Making use of the inverse matrix n-t [11] , the system (1.10) can be reduced 

to the normal form 
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x = Al-1 (A - All) x - A-lAlaY + A-‘Bl 

Y = A-1 (A - Aal) Y - A-‘A,a + A-‘& (2.U 

With the aid of the estimates (1.6) and (1.9) we can esraotish that the matrices in the 
right-hand side of the system (2.1) generate completely continuous operaton in the space 

of the sequences s(a), (0 < u < */a). Here X E s (a), under the conditions 

II X ll,~o~ = supr I zkka i < -+ lim 1 zkka I= 0 (k -+ 00) 

In a number of cases one succeeds to prove the unique solvability of the system (2.1) 
ins’ (a). The latter takes place, for example, for x > 0. In this case, the operator in the 

left-hand side of (1.1) is positive definite in some Hilbert space. In the general case 
the system (2.1) is quasi-regular and it can be studied by the known methods [ 121. 

For small apex angles of the wedge, the operators in the right-hand side of the system 

(2.1) are small and they can be made to be contractive ; the system can be solved by 

the method of successive approximations. 

9. We investigate the zero-th approximation of the solution of the system (2.1). 

Taking into account what has been said above, we note that such a solution is effective 
for small apex angles of the wedge. Computing the elements of the matrix A-rIlk and 
inserting their values into the relation (1.7). we obtain the approximate solution of Eq. 

(1.1). where the coefficients zr and yl have the form 

I 
‘I - =(‘I) = K,' (- zI) 2q c i’ w - q v (Q + 51 

(zI + irl) K_ (9) 1 - G1 - W K+ (W, 
(3.1) 

1 1, od 
YI = y (‘1) = K+’ (- zI) 2q 

v (4 - v v (4 + rl 
(zI - iq) K, (iv) - (zI + iq) K_ (iq) 1 I,(h) 

v (2) = I,’ (2) I,--’ (2) 

For the computation of the function q (p) far from the points p = I and p = a , in 
the relation (1.7) we can restrict ourselves to a finite number of terms. The series con- 

verges as a geometric progression. For the investigation of the function Q (o) near the 
indicated points, the relation (1.7) can be summed into an integral and is transformed 

into the formula of operational calculus 

Q (I’) = A {zol, (xp) I,-1 (%a) - (2ni)_’ 
s 

\z (- t) Ii, (xp) lit-l (x0) + 

y (- ‘) h’i, (XP) Ki;’ (%)I K+’ (‘) K,-’ (‘) a’) P-’ (3.2) 

The contour F lies in the lower half-plane, enveloping from above the origin and the 
poles of the function K, (z) and from below the points t = -fr iq Replacing the ratio 
of the Bessel functions by their asymptotic expressions (1.9). we obtain a first approxi- 

mation expression for Q (o) at P --* 1 and P -+ a , respectively 

(I (P) - &? (f - p-“)-“‘z (I -k 0 (In P)) 

q (p) - w I1 - (a/fP l-‘/t (1 -t 0 (In a / p)) 
1 

C 
v (V - ‘1 rl + v &I 

v= 2’1m K_o- K+ (irl) 1 1 v (4 - ? V(x)-c q ', (4 '" = 2l) vz K,o-- K- (irl) I- I, (1.) 

(3.3) 
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